Finite-size exciton insulator in graphene dots & magnetic field effects on topological graphene

Reinhold Egger
A. De Martino, W. Häusler, T. Paananen
Outline

- Graphene quantum dot: \(N \) particle problem
 - No-pair model: Hartree-Fock calculations
 - Accuracy of no-pair model: Exact diagonalization of full QED Hamiltonian for \(N=2,3 \)
- Wigner molecule formation
- Finite-size excitonic instability
 - Paananen, Egger & Siedentop, PRB 83, 085409 (2011)
 - Paananen & Egger, PRB 84, 155456 (2011)

- Landau levels & helical edge states in topological monolayer graphene with enhanced spin-orbit interactions
 - De Martino, Hütten & Egger, PRB 84, 155420 (2011)
Band structure

- Two independent K points in first Brillouin zone: „valley“ d.o.f.
- Band gap vanishes at K points (Dirac points, $E=0$)
- Lowest-order $k.p$ scheme: „relativistic“ Dirac light cone dispersion close to Dirac point
 - Emergent Lorentz invariance
- Here: study effects of
 - Coulomb interaction in „Dirac dot“
 - Spin-orbit coupling

\[E(\vec{q}) = \pm v|\vec{q}| \]
\[\vec{q} = \vec{k} - \vec{K} \]
\[v \approx c / 300 \]
Coulomb interaction effects

- Emergent Lorentz invariance broken by Coulomb interaction
- Retardation effects (almost) negligible
- Coulomb field lines are in 3D
- Strength parametrized by (bare) fine structure constant
 \[
 \alpha = \frac{E_C}{E_k} = \frac{e^2}{\varepsilon \hbar \nu} \approx \frac{2.2}{\varepsilon}
 \]
- For density \(n \), typical kinetic energy: \(E_k = \hbar \nu \sqrt{n} \)
- Typical Coulomb energy: \(E_C = \frac{e^2}{\varepsilon r} \approx \frac{e^2 \sqrt{n}}{\varepsilon} \)
- Condensed-matter strong-coupling variant of QED\(_{2+1}\)

Monolayer graphene: (bulk) interaction effects

- α is density-independent: no bulk Wigner crystallization in graphene!
- Fermi liquid theory applies away from Dirac point (doped graphene)
- What happens near Dirac point (undoped graphene)?
 - Density of states vanishes
 - No screening of $1/r$ Coulomb tail (up to renormalization of dielectric constant)
Weak-coupling results

- One-loop RG calculation: logarithmic growth of Fermi velocity at low energies
 \[v(k) = v \left(1 + \frac{\alpha}{4} \ln \left(\frac{\Lambda}{k} \right) \right) \]
 Cutoff scale (for validity of Dirac cone spectrum)
- Corresponds to slow logarithmic RG flow \(\alpha \to 0 \) at low energy scales
- Weak interactions are marginally irrelevant
- Experimentally observed (ARPES, cyclotron resonance)
 \[\text{Elias et al., Nature Physics 2011} \]
- Same conclusion from two-loop or RPA calculations for \(\alpha < 1 \)
 \[\text{Son, PRB 2007} \]
Dirac liquid vs excitonic insulator

- Perturbative analysis: quasi-particle decay rate has **linear scaling with energy**
 - consistent with ARPES and STM experiments
 - resembles marginal Fermi liquid: „Dirac liquid“
- For $\alpha > \alpha_c$: spontaneous mass gap generation theoretically predicted (not observed so far)
 - proliferation of electron-hole pairs
 - excitonic insulator, chiral symmetry breaking
 - Schwinger-Dyson self-consistent gap equation predicts gap in meV regime
- QMC simulations: $\alpha_c \approx 1.1$

Drut & Lähde, PRL 2009
Mesoscopic geometry: Quantum Dots

- Bulk system: complicated many-body problem
- Here: finite-size setting
 - mathematically well defined & experimentally realizable
- N interacting Dirac quasi-particles on top of filled Dirac sea
 - Magnetic confinement
 De Martino, Dell’Anna & Egger, PRL 2007
 - Quasibound states in electrostatic potentials
 Silvestrov & Efetov, PRL 2006
 - Finite-size „flake“: circular dot with „no out-current“ (infinite mass) boundary condition [results shown in this talk]
- Single-particle states define noninteracting artificial atom energy levels
 - In contrast to atomic physics: interactions much stronger!
N particle problem

- "Naive" interacting N-particle problem for Dirac fermions is ill-defined

- For weak interaction: No-pair model (Furry picture) with fixed N

 - Project single-particle spectrum to positive energies
 - Neglect excitation of electron-hole pairs
 - Here protected by finite-size gap between negative and positive energy levels

 Egger et al., J. Phys. A 2010

- Accuracy of no-pair approximation?
Hartree-Fock results for no-pair model

- Simplest approach: RHF calculations
 - Unexpectedly accurate even for strong interactions (within no-pair model): Benchmarked vs exact diagonalization for N=2,3
 - Energies agree within <1% for \(\alpha = 2 \)
- Results for artificial atom holding up to N=20 electrons:
 - Ground state energy
 - Density (and spin density) expectation value
 - Pair correlation function

Paananen, Egger & Siedentop, PRB 2011
Addition spectrum

Addition energy:

\[\Delta(N) = E(N + 1) + E(N - 1) - 2E(N) \]

Magic numbers different & more pronounced with interactions!

Measurable by Coulomb blockade spectroscopy…

Energy unit: \(\hbar v/R \)
Wigner crystallization

radial density profile

pair correlations: spatial shells with sequence 15-3-1
Wigner crystallization

- Electrostatic energy starts to dominate over kinetic energy for $\alpha > 1$
- Particles maximize their distance & form "crystal" – here ring-like arrangement
 - Spatial shell filling sequence agrees well with classical result (minimization of electrostatic energy)
- Wigner crystallization favored in confined geometry (no Wigner crystal in bulk graphene!)
- Crossover from Dirac liquid regime to "Wigner molecule" is similar to standard 2DEG case

Egger, Häusler, Mak & Grabert, PRL 1999
Beyond no-pair model: „QED“ approach

- Expand second-quantized field operator

\[\Psi(\vec{x}) = \sum_a \Phi^{(+)}(\vec{x})c_a + \sum_{\tilde{a}} \Phi^{(-)}(\vec{x})d_{\tilde{a}}^+ \]

- \(a (\tilde{a}) \) labels single-particle states \(\Phi^{(+)}(\Phi^{(-)}) \) with positive (negative) energy

- Noninteracting reference state = filled Dirac sea

- QED Hamiltonian

\[H = \sum_a E_a c_a^+ c_a + \sum_{\tilde{a}} E_{\tilde{a}} d_{\tilde{a}}^+ d_{\tilde{a}} + H_I \]

\[H_I = \frac{\hbar v \alpha}{2} \int \frac{d\vec{x}d\vec{x}'}{|\vec{x} - \vec{x}'|} : \Psi^+(\vec{x})\Psi^+(\vec{x}')\Psi(\vec{x}')\Psi(\vec{x}) : \]

Paananen & Egger, PRB 2011
Exact diagonalization

- Electron (N_e) and hole (N_h) numbers are not conserved
- Define particle number as $N = N_e - N_h$
 - N = number of particles on top of filled Dirac sea for $\alpha \rightarrow 0$
 - Conserved by full Hamiltonian
 - Number of electron-hole pairs N_{eh} not conserved!
 - No-pair model follows for $N_{eh} = 0$
- Exact diagonalization for $N = 2, 3$ with up to $N_{eh} = 2$ electron-hole pairs feasible
N=2: exact diagonalization

\[\delta E(\alpha) = E(\alpha) - E(0) \]

- No-pair result for interaction energy accurate only for \(\alpha < 0.5 \)
- Electron-hole pairs proliferate for \(\alpha > 1 \)
- Finite-size crossover to excitonic instability, no-pair model breaks down!
$N=3$: exact diagonalization
Wigner molecule revisited

- **HF analysis** reporting Wigner molecule formation for $\alpha > 1$ relied on **no-pair** model – but no-pair model breaks down for $\alpha > 1$
- **ED of full QED** model with $N=3$ shows pronounced density correlations & numerical results for pair correlations similar to no-pair predictions
- Wigner molecule formation only weakly affected by electron-hole proliferation
Spin-orbit effects: topological graphene

Castro Neto et al., RMP 2009

\[H_{SOI} = \pm \Delta \tau_z \sigma_z + \frac{\lambda}{2} \left(\pm \tau_x \sigma_y - \tau_y \sigma_x \right) \]

\(\Delta \): intrinsic SOI

\(\lambda \): „Rashba“ SOI (curvature, electric field)

Enhancement of pristine (small) values:

- \textit{Ab initio} calculations: Indium or Thallium adatom deposition yields up to \(\Delta \approx 100 \) K

 \(\text{Weeks et al., PRX 2012} \)

- Graphene experiments on Ni surfaces report large values for \(\lambda \)

 \(\text{Varykhalov et al., PRL 2008} \)

- Colossal enhancement of spin-orbit couplings observed in weakly hydrogenated graphene

 \(\text{Balakrishnan et al., Nature Phys. 2013} \)
Kane-Mele model: „quantum spin Hall“ (QSH) phase

- **Topological insulator** for $\Delta > \lambda/2$: bulk band gap but gapless excitations at boundary
- **Helical edge liquid**: right- and left-moving states have opposite spin polarization
 - Spin-independent disorder backscattering strongly suppressed (protected by time reversal symmetry)
- Observed in HgTe wells

Possibility of QSH phase in graphene!
- what happens in (perpendicular) magnetic field?

Kane & Mele, PRL 2005

Konig et al., J. Phys. Soc. Jpn. 2008
Graphene band structure with SOI and magnetic field

- Consider piecewise constant magnetic field B
 - Cyclotron orbits: magnetic length $l = \sqrt{\frac{\hbar c}{2eB}}$
 - Energy scale $\hbar \omega_c = \hbar v / l \sim \sqrt{B}$

 $B=1T: \approx 36 \text{ meV} \quad (l \approx 18 \text{ nm})$

- Also include spin Zeeman energy
 \[E_Z = g \mu_B B \ll \hbar \omega_c \]

- Exact spinor eigenstates: \textit{parabolic cylinder functions of order} p

 De Martino, Hütten & Egger, PRB 2011
Homogeneous field: Landau levels

Normalizability: \(p=n=0,1,2,3,\ldots \) → Landau levels solve the quartic equation

\[
\left[(E + E_Z)^2 - n(\hbar \omega_c)^2 - \Delta^2 \right] \left[(E - E_Z)^2 - (n+1)(\hbar \omega_c)^2 - \Delta^2 \right] = \lambda^2 \left[(E - \Delta)^2 - E_Z^2 \right]
\]

- Standard result for \(\Delta = \lambda = E_Z = 0 \): \(E_{\pm,n} = \pm \hbar \omega_c \sqrt{n} \)
- Recover \(\Delta = E_Z = 0 \) results \(\text{Rashba, PRB 2009} \)
- General case: no zero modes in presence of SOI
- Particle hole symmetry generally broken
- Exact solution for \(n=0 \) and spin down:

\[
E_{n=0,\downarrow} = \Delta - E_Z
\]
QSH phase without time reversal symmetry?

- Quartic equation can be solved analytically, but expressions lengthy & not illuminating
- Study fate of QSH phase in the magnetic field for simpler limit $\lambda=0$: QSH phase for $B=0$
 - Can QSH phase survive time reversal symmetry breaking ($B>0$)?
 - Yang et al., PRL 2011
- Then spin σ conserved, quartic equation yields
 \[E_{\pm,n,\sigma} = \sigma E_Z \pm \sqrt{n(\hbar \omega_c)^2 + \Delta^2} \]
- no zero energy states: \[E_{0,\sigma} = \sigma(E_Z - \Delta) \]
Edge states for $\lambda=0$

- Semi-infinite geometry $y<0$ with armchair boundary condition at $y=0$
 - Wavenumber k_x conserved
 - For $k_x < 0$: distance from boundary set by $|k_x|

- Order p of cylinder function now arbitrary real
 - determined by boundary condition (with symmetric or antisymmetric valley combinations)

\[
\left(\sqrt{p\left(\hbar\omega_c\right)^2 + \Delta^2} + \sigma E_Z \right) D_{p-1}(2k_x l) + \hbar\omega_c D_p(2k_x l) = 0
\]

- Dispersion: $E_{\pm,\sigma}(k_x) = \sigma E_Z \pm \sqrt{p(k_x) \left(\hbar\omega_c\right)^2 + \Delta^2}$

De Martino, Hütten & Egger, PRB 2011
Edge states: numerical solution

\[\Delta = 6 \text{meV} > E_z \]

\[\Delta = 0.3 \text{meV} < E_z \]

\[B = 15T \]
Stability of QSH phase

- Standard chiral Hall edges recovered for $\Delta=0$
- QSH phase with helical edge liquid near Dirac point for $\Delta > E_Z$
- Quantum phase transition at $\Delta = E_Z$
- Spin-filtered Hall edge state for $\Delta < E_Z$

Both phases similar but with opposite spin current!

Abanin, Lee & Levitov, PRL 2006
Conclusions

- N particle problem in graphene dots
 - No-pair model quantitatively accurate for $\alpha < 0.5$
 - Electron-hole pairs proliferate for $\alpha > 1$
 - Finite-size excitonic instability & Wigner crystallization

- QSH phase in graphene with enhanced SOI survives for broken time reversal symmetry
 - topological insulator with helical edge states