1. K-partite entanglement of pure states

(a) Given a pure state $|\psi_{ABC}\rangle \in \mathcal{H}^A \otimes \mathcal{H}^B \otimes \mathcal{H}^C$, with $\dim(\mathcal{H}^A) = \dim(\mathcal{H}^B) = \dim(\mathcal{H}^C) = 2$. Assume that $|\psi_{ABC}\rangle$ is $A-BC$ and $AB-C$ separable. Show that $|\psi_{ABC}\rangle$ is $A-B-C$ separable.

(b) Show that if a state $|\psi\rangle$ is k-separable for all possible k-partite splits, $|\psi\rangle$ is $(k+1)$-separable for all $(k+1)$-partite splits. If a state $|\psi\rangle$ is biseparable for all possible bipartitions, is it also fully separable? (Hints: use the result of 1(a))

2. Partial transpose criterion

(a) Calculate the eigenvalues of the partial transpose of the quantum state

$$
\rho_p = (1 - p)|\phi^+\rangle\langle\phi^+| + \frac{p}{4} \mathbb{1} \quad \text{with} \quad |\phi^+\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle).
$$

For which range p with $0 \leq p \leq 1$ is this state entangled?

(b) Consider $\rho_{AB}, \sigma_{AB} \in B(\mathcal{H}_A \otimes \mathcal{H}_B)$ and verify the following properties:

i. $\rho_{AB}^T = (\rho_{AB}^A)^B$,

ii. $\text{tr}(\rho_{AB}^A) = \text{tr}(\rho_{AB}^B)$

iii. $\text{tr}(\rho_{AB}^A \sigma_{AB}) = \text{tr}(\rho_{AB} \sigma_{AB}^A)$

(c) (*BONUS*) Show that

i. $\rho_{AB}^A \geq 0 \iff \rho_{AB}^B \geq 0$,

ii. $[(\mathbb{1}_A \otimes B) \rho_{AB} (\mathbb{1}_A \otimes B^\dagger)]^A = (\mathbb{1}_A \otimes B) \rho_{AB}^A (\mathbb{1}_A \otimes B^\dagger)$ and

iii. $\rho_{AB}^A \geq 0 \Rightarrow [(A \otimes B) \rho_{AB} (A^\dagger \otimes B^\dagger)]^A \geq 0$.
3. Entanglement

Consider the density operator

\[\rho_{ABC} = \frac{1}{N} \left[2|GHZ\rangle\langle GHZ| + \sum_{x=1}^{3} a_x |k_x\rangle\langle k_x| + \frac{1}{a_x} |\bar{k}_x\rangle\langle \bar{k}_x| \right] \]

with \(k \in \{ k_1 = 001, k_2 = 010, k_3 = 100 \} \), \(\bar{k} \) being the binary representation which is given by inverting all digits of \(k \), \(|GHZ\rangle = \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle) \) and \(\prod_{x=1}^{3} a_x \neq 1 \)

(a) Calculate the normalization \(N \) and write \(\rho_{ABC} \) as a matrix in the computational basis. What are the restrictions on \(a_x \) such that \(\rho_{ABC} \) is positive semidefinite?

(b) Show that the state has a positive partial transpose with respect to every bipartite split.

(Hint: Make use of the block structure of \(\rho_{ABC}^{\Gamma_I} \), where \(\Gamma_I \) denotes the partial transposition with respect to the subsystems \(I \in \{ A, B, C \} \)).

(c) (*BONUS*) Show that the state is separable with respect to every bipartite split.

(Hint: Again use the block structure and that in 2 \(\times \) 2-dimensions the PPT criterion is necessary and sufficient for separability).