1. Entanglement

Consider the density operator

\[\rho_{ABC} = \frac{1}{N} \left[2|GHZ\rangle\langle GHZ| + \sum_{x=1}^{3} a_x |k_x\rangle\langle k_x| + \frac{1}{a_x} |\bar{k}_x\rangle\langle \bar{k}_x| \right] \]

with \(k \in \{k_1 = 001, k_2 = 010, k_3 = 100\} \), \(\bar{k} \) being the binary representation and which is given by inverting all digits of \(k \), \(|GHZ\rangle = \frac{1}{\sqrt{2}} (|000\rangle + |111\rangle) \) and \(\prod_{x=1}^{3} a_x \neq 1 \)

(a) Calculate the normalization \(N \) and write \(\rho_{ABC} \) as a matrix in the computational basis. What are the restrictions on \(a_x \) such that \(\rho_{ABC} \) is positive?

(b) Show that the states have a positive partial transpose with respect to every bipartite split. (Hint: Make use of the block structure of \(\rho_{ABC}^{\Gamma_I} \), where \(\Gamma_I \) denotes the partial transposition with respect to subsystems \(I \in \{A, B, C\} \)).

(c) Show that the states are separable with respect to every bipartite split. (Hint: Again use the block structure and that in 2 \(\times \) 2-dimensions the PPT criterion is necessary and sufficient for separability).

(d) Show that the states \(\rho_{ABC} \) are entangled by using the range criterion. You may use the following procedure:

Show that there exists no product vector \(|\phi\rangle = \bigotimes_{m=1}^{3} |\phi_m\rangle \) with the conditions \(|\phi\rangle \in \text{range}(\rho_{ABC}) \) (C1) and \(|\phi\rangle^* \in \text{range}(\rho_{ABC}^{\Gamma_I}) \) (C2).

(i) Obtain the kernels of \(\rho_{ABC} \) and \(\rho_{ABC}^{\Gamma_I} \).

(ii) Reformulate the conditions C1 and C2 in terms of the kernels.

(iii) It can be shown that \(|\phi_m\rangle = \cos \theta_m |0\rangle + \sin \theta_m |1\rangle \) with \(\theta \in [0, \frac{\pi}{4}] \) is in this case a general representation of \(|\phi_m\rangle \). Combine the conditions (C1, C2) in order to get a contradiction to \(\prod_{x=1}^{3} a_x \neq 1 \).
2. State tomography

Let \(\rho \) be an unknown qubit state and \(E_1 = \frac{1}{3}|0\rangle\langle 0|, \ E_2 = \frac{1}{3}|+\rangle\langle +|, \ E_3 = \frac{1}{3}|i+\rangle\langle i+| \) and \(E_4 = \mathbf{1} - (E_1 + E_2 + E_3) \) being a POVM, where \(|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle), |i+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + i|1\rangle) \) and \(\{ |i\rangle \} \) denotes the computational basis.

(a) Formulate the set of linear equations of \(p_l = \text{tr}(\rho E_l) \) by using \(E_l = \sum_{i,j}^{1,1} c_{ij}^{[l]} |i\rangle\langle j| \) and \(\rho = \sum_{i,j}^{1,1} r_{ij} |i\rangle\langle j| \) with \(\langle i| j \rangle = \delta_{ij} \) for the unknown variables \(r_{ij} \).

(b) The application of \(n \) identical and independent POVMs \(\{ E_l \}_{l=1}^{4} \) on \(n \) copies of \(\rho \) leads to the empirical probabilities \(p_{nl} \approx \text{tr}(\rho E_l) \). For \(n = 650 \) this gives \(p_{n1} = \frac{159}{650}, p_{n2} = \frac{123}{650}, p_{n3} = \frac{140}{650} \) and \(p_{n4} = \frac{228}{650} \). Reconstruct the state \(\rho_n \) by using the empirical probabilities.

(c) Consider the set of states \(\Gamma_\zeta \), where the distance (1-norm) between any \(\rho \in \Gamma_\zeta \) and \(\rho_n \) is at most \(\zeta = 0.3 \). What is at maximum the probability that \(\rho \) does not belong to the set \(\Gamma_\zeta \)?

(d) What is the form of the set of states \(\Gamma_\zeta \) in the Bloch vector representation? Calculate the relative volume of the set \(\Gamma_\zeta \) with respect to the volume of the whole Bloch sphere. (Hint: Note that every \(2 \times 2 \)-density operator \(m \) can be written as \(m = \frac{1}{2} (1 + \vec{\sigma}) \) with \(\vec{\sigma} = \sigma_x e_x + \sigma_y e_y + \sigma_z e_z \) and \(\sigma_i \) Pauli matrices).